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A Hybrid Algorithm 
for Solving Sparse Nonlinear Systems of Equations* 

By J. E. Dennis, Jr. and Guangye Li** 

Abstract. This paper presents a hybrid algorithm for solving sparse nonlinear systems 
of equations. The algorithm is based on dividing the columns of the Jacobian into 
two parts and using different algorithms on each part. The hybrid algorithm incorpo- 
rates advantages of both component algorithms by exploiting the special structure of 
the Jacobian to obtain a good approximation to the Jacobian, using as little effort as 
possible. A Kantorovich-type analysis and a locally q-superlinear convergence result for 
this algorithm are given. 

1. Introduction. Consider the nonlinear system of equations 

(1.1) F(x) = O, 

where F: Rn -+ Rn is continuously differentiable on an open convex set D C R', 
and the Jacobian matrix F'(x) is sparse. To solve the system, we use the iteration 

(1.2) = x- B-F(x) 

where x is the current iterate, x is the new iterate, and B is an approximation to 
F'(x), which has the same sparsity as the Jacobian. 

Suppose we have finished the current iteration. Then the information we have is 
x, x, F(x), F(x), B. The purpose of this paper is to find a matrix B which is a good 
approximation to F'(x) and to economize on the number of function evaluations 
required for this approximation. 

In 1970 Schubert [11] gave a sparse modification of Broyden's [1] update. Broy- 
den [2] also gave this algorithm independently. In order to present Schubert's 
algorithm, we introduce the following notation concerning the sparsity pattern of 
the Jacobian: 

Definition 1.1. For j = 1, 2,. . ., n define the subspace Zj c Rn determined by 
the sparsity pattern of the jth row of the Jacobian: 

Zj = {v E Rn: eTv = 0 for all i such that [F'(x)]ji = 0 for all x E Rn 
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where ei is the ith column of the n x n identity matrix. Define the set of matrices 
Z that preserve the sparsity pattern of the Jacobian: 

Z--{A E L(Rn): ATej E Z. for j = 1, 2, ..., n}. 

Definition 1.2. For j = 1, 2, ... , n define the projection operator, Dj E L(Rn), 
that maps Rn onto Zj: 

Dj =_ diag (dj1, dj2,..*djn), 

where 
ji 1, if eiEZj, 

J tlO, otherwise. 
For a scalar a E R, define the pseudoreciprocal 

a1 if a :$ 0, a!+ = {( fc70 
O, if a= 0. 

Now Schubert's update is formulated as follows: 
n 

(1.3) B = B + E([s] [s] j)+ejeT(y - Bs)[s]TX 
j=1 

where [s]j = Djs, s = -x and y = F(x) - F(x). 
The advantage of Schubert's algorithm is that at each iteration only one func- 

tion evaluation is required, and it is q-superlinearly convergent (see Marwil [8]). 
However, it usually requires more iterations than finite difference algorithms (see 
Li [7]). 

Curtis, Powell, and Reid [4] proposed a finite difference algorithm, called the 
CPR algorithm, which is based on a partition of the columns of the Jacobian. 
Coleman and More [3] associate the partition problem with a graph coloring prob- 
lem and gave some partitioning algorithms which can make the number of function 
evaluations needed to approximate the Jacobian by the CPR algorithm optimal or 
nearly optimal. 

Following Coleman and More, we give some definitions concerning a partition of 
the columns of the Jacobian. 

Definition 1.3. A partition of the columns of a matrix B is a division of the 
columns into groups cl, C2,..., cp such that each column belongs to one and only 
one group. 

Definition 1.4. A partition of the columns of a matrix B is consistent with the 
direct determination of B if, whenever bij is a nonzero element of B, then the group 
containing column j has no other column with a nonzero element in row i. 

The CPR algorithm can be formulated as follows: For a given consistent partition 
of the columns of the Jacobian, which divides the set {l,...,n} into p subsets 
cl,... ,Icp (for convenience, ci, i = 1,2,... ,p, denotes both the sets of the columns 
and the sets of the indices of these columns), obtain vectors dl, d2,... , dp such that 
B is determined uniquely by the equations 

(1.4) Bdi = F(x + di) -F(x) =_yi, i = 1, 2, . .. I,p. 

Notice that for the CPR algorithm the number of function evaluations at each 
iteration is p + 1. Since the partition of the columns of the Jacobian plays an 
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important role in the CPR algorithm, we call the CPR algorithm based on Coleman 
and More's algorithms the CPR-CM algorithm. 

The advantage of the CPR algorithm is that it usually requires fewer iterations 
than Schubert's algorithm. However, it requires more function evaluations at each 
iteration than Schubert's algorithm (see Li [7]). 

In [7] we proposed an algorithm called the secant/finite difference (SFD) algo- 
rithm, which is also based on a consistent partition of the columns of the Jacobian. 
However, it uses the information we already have at every iterative step more effi- 
ciently than the CPR algorithm. Let 

(1.5) di= E sjej, i = 1,2, ... I,p, 
3Eci 

i 

(1.6) gi= dj, go=O, 
j=1 

and 

(1.7) yi = F(Xt- gi-1) -F(gi), i = 1,2, .................. ,p, 

where si = i- xi denotes the ith component of s. The SFD algorithm can be 
formulated as follows: If sj 5 0 for some j E ci, then the jth colunm of B is 
determined uniquely by the equations 

Bdi = yi. 

If sj = 0, then the jth colunm of B is equal to the jth colunm of B. 
Since 

(1.8) Yi = go)-F g9) g-), 

yp, = g(x-9p-)-F(- gp) g F( -9p-)- F(X), 
the number of function evaluations required by the SFD algorithm at each iteration 
is one less than that required by the CPR-CM algorithm. 

As an example, consider 

x OO O O O OO 
O x OO O OO O 
O O x O O O O O 

(1.9) 0 0 0 x x 0 0 0 
O O O O x O O O 
x x x O O x O O 
x x x O O O x O 

The paxtition cl = {1}, C2 = {2}, C3 = {3}, C4 = {4, 5,6, 7} is asn optimal consistent 
partition of the columns of the Jacobian. For this problem, the CPR-CM algorithm 
and the SFD algorithm require five and four function evaluations at each iteration, 
respectively. 

In this paper we propose a hybrid algorithm for solving nonlinear systems of 
equations which is a combination of the SFD algorithm and Schubert's algorithm 
(including Broyden's algorithm). For some problems, this algorithm can reduce the 
number of finction evaluations required at each iteration to fewer than that for the 
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SFD algorithm by exploiting the special structure of the Jacobian. For example, in 
(1.9) the number of function evaluations is two. 

The hybrid algorithm and its properties are given in Section 2. A Kantorovich- 
type analysis for this algorithm is given in Section 3. A q-superlinear convergence 
result is given in Section 4. 

Throughout the paper, L(R') denotes the linear space of all real n x n matrices, 
11 IIIF the Frobenius norm of a matrix, and 11 11 the 12-vector norm. 

2. The Hybrid Algorithm and Its Properties. Consider the example (1.9). 
The first three columns of the matrix are denser than the other columns, and this 
makes p, the number of the groups in the partition, at least 4. The hybrid algorithm 
divides the columns of the Jacobian into two parts, and uses different algorithms 
on each part. 

We say a group of the columns of a matrix has 'good sparsity' if the columns 
in this group have few nonzeros in the same row position. Otherwise, we say the 
group of the columns has 'bad sparsity'. 

Suppose the columns of the Jacobian can be divided into two groups the good 
sparsity group c and the bad sparsity group c1. For convenience, we use c and cl 
to denote both the groups of the columns of a matrix and the sets of the indices of 
these columns. Then, 

cUci = {l,...,n}. 

For any matrix A E L(Rn), let 

Al = A Z ejeT, A2 = A E ejeT. 
jEc1 jEc 

Then A = A1 + A2. The main idea of the hybrid algorithm is to use Schubert's 
update (including Broyden's update) on B1, and to use the SFD algorithm on B2, 
where B = B1 + B2. 

In practice, there are many ways to choose c and c1. For example, we can first 
partition the columns by using a CPR-CM procedure. Then, if we can afford m 
evaluations of F at each iteration, we can keep the columns of the m - 1 largest 
groups of the partition for c and put all the remaining columns into c1. 

ALGORITHM 2.1. Given a consistent partition of B2, which divides c into p - 1 
subsets C2, C3, ... , Cp, and given an xo E Rn and a nonsingular matrix BO with the 
same sparsity as the Jacobian, for each k > 0 do the following: 

(1) Solve Bksk = -F(Xk). 
(2) Choose xk+1 by Xk+1 = Xk + Sk or by a global strategy such as a trust-region 

method. Let Sk = Xk+1 Xk 

(3) Check for convergence. 
(4) Update Bk by Schubert's update to get B k+1 and update Bk by the SFD 

algorithm to get Bk+1 

(5) Set 
Bk+1 = B k+1 + Bk+1 

Let di, gi and yi be defined as in (1.5)-(1.7), and let 
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Then, 

(2.2) Jidi = yi, i = 1, 21, .1 . p, 

and the update of Algorithm 2.1 can be formulated as 
n 

B1 = B1 + ([dl]IT[dl]i)+eieT(yl - Bldl)[dlhi, 
i=1 

(2.3) B2 = B2 + 
Z Zsj~(ji - B2)ejeT, 

i=2 jEc, 

B= B1+ B2. 

We now give some of the properties of B obtained from (2.3). 

LEMMA 2. 1. B satisfies the secant equations 

(2.4) Bdi =yi, i = 1,... ,p, 

and (2.4) implies that 

(2.5) Bs= F(x)-F(x) =y. 

LEMMA 2.2. B is the unique solution to 

(2.6) min{IIB-BIIF: Bdi = yi, i = 1,. . .,p, and BeZ}. 

The proof of this lemma is similar to that for Schubert's algorithm given by Reid 
[10] and Marwil [8]. 

THEOREM 2.3. If A E L(Rn) has the same sparsity as the Jacobian, then 

2 ~~~~~112 IIB1 A)I2 JIB, -A II|F = JIB,1-Al|F- 112 |(B1 - Al).sll 

(2.7) n 

+ ([dl]iT[dl]i)+ [eT(yl -Ad )]2. 

Proof. Let E1 = B1 - A1 and E1 = B1-A1. From (2.3) we have 

(2.8) eiTB, = eiTB1 + ([di]IT[dl]i)+eT(yl - B1dl)[dl]IT. 

Subtracting eTA1 from both sides of (2.8), and noticing that eTB1d1 = eTB1 [d1]I 
and that eTAld1 = eTA1 [d1]I, we obtain 

eTE, = eiTEl + ([di]T[dl]i)+eT(y1-B1d1)[d1]T 

(2.9) = eTEi(I - Qd]IT[dlI)+[dI[dl ) 

+ ([di]T[dl]i)+e T((y - A1d)[d1]IT. 

Since ([dl]IT[dl]i)+eT(yl -A1d,) is a scalar, the first and second terms on the right 
of (2.9) are perpendicular to each other, and we have 

Ile Tr, 112 = IleTEl(I - ([d]IT[dl]I)+[dl]I[dl]IT)II2 + ([di]IT[dl]i)+ leT(y - Aid,)12 

= IleTE, 112 - ([di]T[dl]i)+IeTEl [dil]i2 + ([di]T[dl]i)+Ie T(yi - Aid,)12 

< IleiTEi 112 - 1 IeTEldlI2 + ([dl]IT[dl]i)+IeAT(yi-A1d,)12. 2 .?118 212 
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Therefore, 
n 

lI'IB - Ail2 = Ej lleTilI 12 
i=l1 

IB1 -Al - 112 Il(Bi - Ai)di 112 F 118911 2 
n 

+ Z([di]T[di]i)+[eT(y -A di)12 
i=l 

= lB1-AiII2F- 1A II(Bi - Al)SI12 F 118911 2 
n 

+ Z([di]T[di]i)+[eT(y - Al di)]2. 0i 
i=l 

THEOREM 2.4. If A E L(Rn) has the same sparsity as the Jacobian, then 

lIB2 -A2II1 < IB2 - A211-2 112 II(B2 - A2)S112 

(2.10) P -% 
+ p L jj II (Ji - A)ej312. 

i=2 jEc, 

Proof. Let E2 = B2 -A2 and E2 = B2 -A2. It follows from (2.3) that if j e ci, 
i = 2, .. ., P, then 

(2.11) B2ej = B2ej + -ssj(J -B2)ej. 

Subtracting A2ej from both sides of (2.11), we obtain 

E2ej = (1s-8+sj)E2ej + s+tsj(J8 -A2)ej. 3 3(h-A). 

Since (1 - 8j+Sj )Sj+Sj = 0, we have j3 j 

IIE2ejII2 = (1 - +sj)IIE2ejII2 + SIj II(J, - A2)ej 112 

= IIE2ej 112 - s+sjIIE2ej II2 + -Ij II (J, - A2)ej 112. 

Therefore, 

lIE2 IF = E IIE2ej 112 
jEc 

(2.12) P 

= lIE2112F -E sjj+ 8jllE2ej 112 + . tsj ll(Ji - A)ej 112. 
jEc i=2 jECi 

In addition, 
2 

- s+sj IE2ej II2 = E2 Sj+jeje7T 
jEC jEC F 

IIE2 Z3ec sj+sjejeTsII2 elE2sll2 

1II12 118112 

Thus, (2.10) follows from (2.12). O 
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3. A Kantorovich-Type Analysis. To study the convergence properties of 
Algorithm 2.1, we assume that F' satisfies the following Lipschitz condition in the 
domain D defined after (1.1): For every i E c, there exists -yi > 0 such that 

(3.1) II(F'(x)-F'(y))ejJJ < yjIIx-yJJ Vx,y E D, 

and there exists Oi > O, i = 1, 2, ... , n such that 

(3.2) IIeT(F'(x)i - F'(y)1)II < 0 lx - yl Vx,y E D. 

Let -y = (Z 2)1/2 0 = (En 1 02)1/2, a = (92 + 02)1/2. If F' satisfies this 
Lipschitz condition, then the following are true: 

(3.3) IIF'(x)i-F'(y)1IIF < OIIX-YII Vx,y ED, 

(3.4) IIF'(x)2-F'(Y)211F < yIx-Yll Vx,y ED, 

and 

(3.5) IIF'(x)-F'(y)IIF < c4llx-yll Vx,y ED. 

LEMMA 3. 1. Let F' satisfy (3.1) and (3.2), and let B be generated by Algorithm 
2.1. If x E D and x-d1 C D, then for any z E D, 

JIIB, - F'(Z)1112 < lIB1 (Z)ll- - Fz 12 82 ll(Bi - F'(z))S.112 

(3.6) +02 
1 

+ 02 11I- -Zll + - IlId 11) 

Proof. Substituting F'(z) for A in (2.7), we obtain 

JIB, - F(Z) 1112F < JIB, - 
F'(z)1 i 1121II 1 (B1 - F'(z) )S5112 

(3.7) n 
+ ([di]T[di]i)+ [eT(yi - F'(z)dl)]2. 

i=l1 

By (2.1), (2.2), (3.3), and the Cauchy-Schwarz inequality, we have 

n 

Z([di]T[di]i)+[eT(yi - F'(z)dl )]2 
i=l1 

n 

= Z([di]T[di]i)+ (eT(Ji -F(z))1 [di 
i=l 

n n 

(3.8) 
< j( [di]T[d]ij)+ JeT(Ji - F'(z))i 11211 [di i 112 < E II eT(Ji - F'(z))1 112 

i=1 i=1 

rl ~~~~~~~~~~2 
= jj(J1 - F(Z))1ij2 = f(F'(t - (1 - t)di) - F'(z))i dt 

JF 

< 02(iit _- Zl +2 lid, 11)2 

Then (3.6) follows from (3.7) and (3.8). El 
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LEMMA 3.2. Let F' satisfy (3.1) and (3.2), and let B be generated by Algorithm 
2.1. If xED and {x-9g,i=2,...,p} cD, then for anyzED, 

(3 9) IJB2 - F'(Z)2II1 ? IlB2 - F'(Z)2II - 118112 II(B2 - F'(z)2)s 112 

+ 12((II - zl1 + 11.11)2. 

Proof. Substituting F'(z) for A in (2.10), we obtain 

lIB2 - F'(Z)2II2F < lB2 - F'(Z)2II -11 ll1 1 (B2 - F'(z)2)s112 

(3.10) p 

+ t s sj II (Ji - F'(z))ej 112. 
JE3 i=2 jEci 

It follows from (2.1) and (3.1) that 

P P 

s s sj I(Ji - F'(z))ej 112 < I I l(Ji - F'(z))eji 112 
t=2 jECi t=2 jECi 

p 2 

(3.11) ~~=LEE g F(-i + t (gi - gi 1 )) - F(z)) dt ej 

(3.11) ~~i=2j3Eci 

< E E zl2 I l + (1- t)IIgli + t gi -II) dt) 
i=2 jEC ? 

p 

< Z E j2(ll - Zll + 11811)2 = ,2(11I - Zll + 11811)2. 
i=2 jECi 

Thus, (3.9) follows from (3.10) and (3.11). O 

Let 

dk= Zs8ej, 
JE3 jEc. 

and 

g= djk, i = 1,2, g p o =0 

j=1 

We have the following estimate for Bk+l. 

THEOREM 3.3. Let F' satisfy (3.1) and (3.2), and let {xk} and {Bk} be gen- 
erated by Algorithm 2.1. If {x3} k=+' c D and {xft+1 - gj, i = 1,2, ... ,p}0 c D, 
then 

k 

(3.12) JIBk+l - F'(xk+1)IIF < IB0 - F'(x0)IIF + 2caE JJxj+1 - xtII. 
i=O 

Proof. Substituting z for x in (3.6) and (3.9), we have 

IB 1- FI(.t)1 112 < JIB, - F'(X)j112 + ( Ildl 1) 

and 

IB2- F (X)2II2 < IlB2- F'(X)2II + (aII8II)2. 
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Therefore, 

FB-F'(?)jF = JIB, - F'(X)1jjF + l|B2 -F'(t)2 F 

? JB - F'(X)j11 + (02 + _92)iisi2 = IIB- F'(x)j12 + a2iisii2. 

Then, 

(3.13) JIB - F'(Xt)lF < JB - F'(X)IIF + callj - xjj <JB - F'(x)IIF + 2call - xll. 

Thus, (3.12) follows from (3.13). 0 
Inequality (3.12) allows us to obtain the following Kantorovich-type theorem for 

Algorithm 2.1. 

THEOREM 3.4. Assume that F' satisfies (3.1) and (3.2). Also assume that 
x? E D and B3 E L(Rn) satisfy 

IB0 - F'(x0)IIF < 6, II(B0)-Y11F < /, II(Bo)-1F(xo)II <?q 
and 

h-(l 5 < 1 1 < 

If S(x?, 2t*) -= x: lix- xo < 2t*} c D, where 

t 1 (1 -(1-l1h) 

then {xk}, generated by Algorithm 2.1 without any global strategy, converges to x*, 
the unique root of F(x) in S(xo, t) n D, where 

1 -l-36( + 2aflq 1/2 
a-/3 (1+(1- 213 \/2 \ a13 k (1Ti 136)2] 

Proof. Consider the scalar iteration 

(3.14) tk+1 -tk = 23 ,f(tk), to = 0, k = 0, 1, 2,..., 

where 

(3.15) f(t) = 5at2_ 1-36t+ 
? 

2 13 13* 
It is easy to show that {tk} satisfies the difference equation 

(3.16) tk+1 - tk = [a(tk - tk-1) + 2atk-1 + 6](tk - tk-1), 

where p = (3 + ,36)/5 < 2/3. Note that (3.16) is equivalent to 

(3.17) tk+1 - =t [a(tk + tk-1) + 6](tk - tk-1). 

From (3.17) we see that {tk} is a monotonically increasing sequence. Since t* is 
the smaller of the two roots of (3.15), from (3.14) we have 

t -tk+1 t -tk 21 3f (tk) 

= 213 f(t*)-f(tk)-fI(tk)(t* -tk) + (f'(tk) + (t -tk)] 

_ 213 [a(t + tk) + -c (t* -tk) 2 -136 . 
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Noticing that t* > 0 = to, by induction we have 

tk<t*, k=0,1,2,. 

Therefore, from (3.14), 
lim tk = t*. 

k-_oo 

Now, by induction, we will prove that 

(3.18) |lXk+l _Xkll < tk+1 - tk, k 1,2 ... 1 

(3.19) {xk} c S(x ,t*), 

(3.20) {xk+i- g9 i = 1,2, ... , p} c S(x0, 2t*), 

and 

(3.21) II(Bk)-11 <1 ? 3I, k= 1,2. 

For k = 0, we have 

lx -Oi?l < n < 2 ?75r = ti o * 

Thus, 
iixl - gi? - x?ll < llxl - x?ll + llg9?ll < 211xl - x?ll < 2t* 

Suppose (3.18)-(3.21) holds for k = 0,1, ... , m - 1. Then, 
rn-i 

lixm- x11 < E (ti+1 - ti) = tm < t . 
i=O 

Therefore, xm E S(xO, t*), and 

fxm 9-gi~,=1 , ,p} c S(x?, 2t*). 

By Theorem 3.3, 

II(Bo)-1(Bm - B0)ll 

< ll(BO)-1llF(llBm- F'(xm)IIF + IIF'(Xm) - F'(x0)IIF + IIF'(x0) - B0IIF) 

< (3 E llx+ - xtll + 26) <,(3at* + 26) < + =5 
i=o 

Thus, by Theorem 3.14 of Dennis and Schnabel [6, p. 45], 

ll(Bm)i11 1 33. 

Therefore, 

llxm+i - xmll < Il(Bm)-illFIIF(xm) - F(xm-) - Bm-i(xm - xm-1)ll 

< f [ 2li' _ 1| + 2x E llxt+_x|ll+6] llxm-xm111 

< 1 [a(tm-tm-1) + 2atm-i + 6](tm - tm-1) = tm+l - tm. 

This completes the induction step. From (3.18) it is easy to show that there is an 

x* E D such that 
lim xk = x. 

k-_oo 

The uniqueness of x* in S(x?, n) n D can be obtained from Theorem 12.6.4 of [9] 

by setting A(x) =_ BO. O 
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4. Local Convergence Properties. To study the local convergence of our 
algorithm, we assume that F: D c RI -? RI has the following property: 

(4.1) There is an x* E D, such that F(x*) = 0 and F'(x*) is nonsingular. 

THEOREM 4.1. Let F satisfy (4.1), and let F' satisfy (3.1) and (3.2). Also, let 
{Xk} be generated by Algorithm 2.1 without any global strategy. Then there exist 
e, 6 > 0 such that if xo E D and BO, a nonsingular n x n matrix, satisfy 

llx0 - x*l1 < 6, IB? - F'(x*)IIF < 6, 

then {xk} is well defined and converges q-superlinearly to x*. 

Proof. Notice that when E and 6 are small enough, we have that h < 1/10, 
/6 < 1/3 and that S(xO, 2t*) c D, where h, 3 and t* are defined in Theorem 3.4. 
Therefore, by Theorem 3.4, 

jXk+1 _ gik, i=1, 2, .. p} c D. 

11~~~~~~ Thus, substituting x* for z in (3.6) and (3.9), we have 

(4.2) |JB, - FI(x*)i1lI' < lIB1 - F'(x*)iIIF - 12 I(Bi - FI(x*)l)sll2 

+ 02(11x - x*ll + 11811)2, 

and 

(4.3) l|B2 - F'(X*)2112 < lIB2 - F'(X*)2112- 2 (B2 - FI(X*)2)Sl12 

+ 7t2(11x - X*ll + 11811)2. 

Then, 

JIBT- F'(x*)lF = JIB, - FI(x*)ilF + lIB2 - F'(x*)2lF 
< IB - FI(x*)ll2F + a2(ll - x*ll + 11811)2 

< IB - FI(x*) 112F + (3ao(xt) )2, 

where a(x, x) = max{ ll - x* l1, IIx - x*l}. Therefore, 

JIB - FI(x*)IIF < IB - FI(x*)IIF + 3ao(x, 4). 

Thus, by Theorem 5.1 of Dennis and Mor-e [5], {xk} converges at least q-linearly to 
* x. 

By Theorem 3.1 of Dennis and More [5], to prove q-superlinear convergence, we 
need only prove that 

(4.4) lim 11(B F 
(X*))skll 

o0 
(4.4) ~~~~k--*oo IlSkIl 

Let E = B - F(x*) and E = B - FI(x*). Then, it follows from (4.2) and (4.3) 
that 

(4.5) IIE1IF < (llEll 1 -lIE 12) 1/2 

and that 

(4.6) IIE211F (}}E2 F - IEz:l2_) 1/ 
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From (4.5) and (4.6), using the same argument for proving q-superlinear conver- 
gence of Broyden's algorithm (see Dennis and More' [5]), we obtain 

lim I(Bk 
- 

FI (X*))28k11=0 

(4-7) lim |B 

and 

(4 . 8) | | ~~( Bk - F (X* ) )2 Sk|| 

Notice that 

II(Bk - FI(X*))Skll < II(Bk - F'(X*))lskll + II(Bk - FI(x*))2s 11. 

Thus, (4.4) follows from (4.7) and (4.8). 

Acknowledgment. We would like to thank Professor Richard Tapia, Professor 
Walter Gautschi and the referees for helpful suggestions and corrections. 

Department of Mathematical Sciences 
Rice University 
P.O. Box 1892 
Houston, Texas 77251 

Computer Science Department 
Cornell University 
Upson Hall 
Ithaca, New York 14853 

1. C. G. BROYDEN, "A class of methods for solving nonlinear simultaneous equations," Math. 
Comp., v. 19, 1965, pp. 577-593. 

2. C. G. BROYDEN, "The convergence of an algorithm for solving sparse nonlinear systems," 
Math. Comp., v. 25, 1971, pp. 285-294. 

3. T. F. COLEMAN & J. J. MORE, "Estimation of sparse Jacobian matrices and graph coloring 
problems," SIAM J. Numer. Anal., v. 20, 1983, pp. 187-209. 

4. A. R. CURTIS, M. J. D. POWELL & J. K. REID, "On the estimation of sparse Jacobian 
matrices," J. Inst. Math. AppI., v. 13, 1974, pp. 117-119. 

5. J. E. DENNIS, JR. & J. J. MORE, "Quasi-Newton methods, motivation and theory," SIAM 
Rev., v. 19, 1977, pp. 46-89. 

6. J. E. DENNIS, JR. & R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization 
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, N. J., 1983. 

7. GUANGYE LI, The Secant/Finite Difference Algorithm for Solving Sparse Nonlinear Systems of 
Equations, Technical Report 86-1, Math Sciences Dept., Rice Univ., 1986. 

8. E. MARWIL, "Convergence results for Schubert's method for solving sparse nonlinear equa- 
tions," SIAM J. Numer. Anal., v. 16, 1979, pp. 588-604. 

9. J. M. ORTEGA & W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several 
Variables, Academic Press, New York, 1970. 

10. J. K. REID, Least Squares Solution of Sparse Systems of Non-linear Equations by a Modified 
Marquardt Algorithm, Proceedings of the NATO Conf. at Cambridge, July 1972, North-Holland, 
Amsterdam, pp. 437-445. 

11. L. K. SCHUBERT, "Modification of a quasi-Newton method for nonlinear equations with a 
sparse Jacobian," Math. Comp., v. 24, 1970, pp. 27-30. 


